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Exact theory for incompressible potential  flow yields the following 

I relation fo r  the distribution of surface velocit ies about a two-dimensional 

c 
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where U i s  the velocity m a d e  dimensionless with respect t o  free stream, 

k i s  a function of a i r f o i l  geometry only, cp the angular coordinate OTZ a 

c i rc le  conformally related t o  the a i r fo i l ,  a the angle of st*tack, aztd 

p the negative of the angle,qf*tzero iift.& simple trigonometry, rn 

interest ing relation can be deripd '& h has apparently been overlooked, 

and which bears on concepts a d s i n g  f r o m  thin-airfoi l  theory. 
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If t h e  

Eots.t,Lon u* E a + j3, cpjc cp - p is introduced, the3 by expanding a d  

collecting terms, 

U = k[ s in  p c o s  u* + (1 + cos cp)sin a*] 

so tha t  a t  zero l i f t  (a* = 0); 

Uo = k sin cpjc 

c 

U1 = k ( l  + COS p) C.) 
( m e  veiocity distribution u1 corresponds t o  the maximum dimeLn..sior?.:ss 
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circulation to W c h  the Kutka condition can give! r i s e . )  Evidently,  then, 

u = %cos u* + U , s b  u* ( 5 4  

m d  since l i f t  coefficient i s  exactly pr0portiana;l t o  sin a*, 

u = uocos a* + u,cz/c 21 (34 
where the final subscript 1 again refers t o  a,* = a/2. 

It is clear that, for  small u*, the two  terms of either Eq. (5a) 

or  ( p )  are somewhat analogous t o  the thin-airfoi l  concepts of '"basic" 

and "additional" velocity distributions, respectively. 

symmets',cal a i r foi ls ,  the factor U /c 

"additianal velocity increment" Ava/V of Ref. 3. The correctness of 

Eq. (3) f o r  such a t r fo i l s  has already been demonstrated by Loftin,* using 

the notation of Ref. 3, although Av& WBS not interpreted as Ul/czl. 

For cambered airfoi ls ,  of course, these two  quantities are not the same, 

since AVa/V i s  computed fo r  meambeEd thickness forms only, i n  accord 

wlth thin-airfoi l  concepts, and can no longer be used i n  an exact m e r  

f o r  cambered airfoi ls .  

DI fact ,  for  

i s  the same as the famillax 
21 

Eqs. ( 5 ) ,  however, are valid f o r  a l l  airfoils. 

In thin-airfoil  theory, tbe basic velocity distrlbution (ma% t o  
1 

wbich the "arlditional" i s  added) is  chosen i n  an essentisl ly arbitrary 

manner, usually a t  the "ideal" angle of attack' rather than a t  zero 

lif+,, A somewhat similar arbitrariness c a  %e demonstrated i n  exact 

theory by generalizing Eq. (5a). While the generalized equation is 

6 

easi ly  derived from Eq. (l), it may be instructive t o  use a diff.. PreILt, 

appmach. 
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Let the "chordP9 of & arbitrary a i r f o i l  be a completely arbi t rary 

reference l ine;  tha t  is ,  the flow a t  a, = 0 i s  any arb i t ra r i ly  chosen 

flow which satisfies the Kutta condition, w i t h  surface-velocity distri- 

bution Uc. A t  a = 5(/2, the ''chord" i s  normal t o  free stream, md the 

velocity distribukion may be desipated I&o Ak arbitwary a, t h a ,  

the free-stream velocity vector may be resolved in to  components paral- 

leled a d  normal t o  the "chord," and the distributions due t o  each 

I 

component may be added. The resu l t  i s  

( 6 )  u = uccos a + %sin a 

For small a, the concepts of "basics9 and '9additiona1" velocity distrl- 

butions again have an approximate validity fo r  the two terms of t h i s  

equation. Only i f  the "basic'9 c z  i s  small, however, will the second 

term be approximately proportional t o  9'ad.ditiona191 c z  . Furthermore, 

the concept that the effect  of a i r f o i l  shape (either thickness, camber, 

o r  both) is primarily embodied i n  the "basic" velocity distl-lbution 

finds no interpretation in the equations above. 

Certafn further concepts are  suggested by the equatfons i n  +heir 
.I 

own right, and these may be of interest .  The r a t io  c2/cZ1 i n  Eq. (3) 

i s  the r a t i o  of any given l i f t  coefficient t o  the maximum t o  the 

Kutta condition can give rise. The term "circulation ratio" and symbol 

K seem approprlate fo r  t h i s  quantity. In terms of IC, Eq. (3) becomes 

u = 'UO J rz + U1K 

me concept of circulation r a t io  might be ;Isem i n  applications of 

boundary-layer control and forced circulation, i n  which ra t ios  
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approaching unity, and effective r a t io s  exceeding unity, respectively, 

m t g b t  be encountered. The use of IC would Zend empbasis t o  the +Aeo- 

r e t i c a l  nonlfneasLty and low slopes of l i f t  curves fo r  such flows, 

s b c e  K = sin a* (when the Kutta condition i s  sa t i s f ied)& 

The use of the coordinate cp)c i n  Eqs. ( 2 )  t o  (4) serves t o  

emphasize the unique conformal correspondence .among a l l  a i r fo i l s  M c h  

maps traLlAng edges into t ra iUng edges, and which includes the circle  

comidered as an d r f o i l  w i t h  "trail ing edge" a t  

i.~sSIc of this conformal correspondence may be i l lus t ra ted  by consi&I.",rzg 

the division of Eq. (4) by Eq. (3)  : 

cp)c = 'II. A ~Aaracter- 

U d J O  = cot(*/2) (7) 

U s  r a t io  is the same for  a l l  airfoils; furthemre, the r a t io  betwea 

the velocity distributions fo r  any t w o  absolute angles of attack a* Fs 

Ukewise independent of airfoil geometry, as can be seen from Eq, (2). 

Thfs means that, i n  principle, the conformal correspondence betwem any 

a i r f o i l  and a circle, and therefore between any tm  a i r fo i l s  (e.g., *& 

same a i r f o i l  With different f lap Ckflections) caz~ be esta3lished appmxL- 

mtely fram measured pressure distributions f o r  two  different m@es of 

st%ack. 

other m e e s  of attack could also be carried out. 

* 

From the ssme data, computations of pressure rlrlstributio2 for 

Fiaally,  it may be of i n t e z s t  t o  consider the use of K a d  a*.> 

Uo and U1 

specified (e.g., t o  agree w i t h  experimpat), the Kutta condition miTi 

restllts ,?ear t ? ~  tra;lling edge being i a o r e d .  

b g  s?z~(a+p) i n  Eq. (1) by the required circulation, made dLmmsiorLeSp 

i n  computing flows i n  which both iocidence and E 3  a x  

This i s  doDe by repla.?- * 
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XL-th respect to t h e  circulation fo r  coincident stagnation points on the 

U = k[sfn(ptu) + IS] 
F r o m  t h i s ,  it is readily shown that 

which gives the result as the sum of a Kutta condition t e r m  and a 

correction term. 

. 
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